TRANSLATE ARTIKEL INI KE DALAM BAHASA LAIN DENGAN MENGKLIK PILIH BAHASA DIBAWAH

Saturday, 11 November 2023

Jenis-jenis Dioda

a.   Dioda Pemancar Cahaya (LED)  

Bila dioda dibias forward, electron pita konduksi melewati junction dan jatuh ke dalam hole. Pada saat elektron-elektron jatuh dari pita konduksi ke pita valensi, mereka memancarkan energi. Pada dioda  Led energi dipancarkan sebagai cahaya, sedangkan pada dioda penyearah energi ini keluar sebagai panas. Dengan menggunakan bahan dasar pembuatan Led seperti gallium, arsen dan phosfor parik dapat membuat Led dengan memancarkan cahaya warna merah, kuning, dan infra merah (tak kelihatan).

Led  yang menghasilkan pancaran yang kelihatan dapat berguna pada display peralatan, mesin hitung, jam digital dan lain-lain. Sedangkan Led infra merah dapat digunakan dalam sistim tanda bahaya pencuri dan lingkup lainnya yang membutuhkan cahaya tak kelihatan. Keuntungan lampu Led dibandingkan lampu pijar adalah umurnya panjang, teganagnnya rendah dan saklar nyala matinya cepat. Gambar 2.1 dibawah ini menjukkan lambang atau simbol dari macam dioda.

 

 

                    Gambar2.1. (a). LED, (b). Dioda photo, (c). Dioda Varactor

                                          (d). Dioda Schottky, (e). Dioda Step-recovery, (f). Dioda Zener

 

 

 

b.   Dioda Photo

Energi thermal menghasilkan pembawa minoritas dalam dioda, makin tinggi suhu makin besar arus dioda yang terbias reverse. Energi cahaya juga menghasilkan pembawa minoritas. Dengan menggunakan jendela kecil untuk membuka junction agar terkena sinar, pabrik dapat membuat dioda photo. Jika cahaya luar mengenai junction dioda photo yang dibias reverse akan dihasilkan pasangan electron-hole dalam lapisan pengosongan. Makin kuat cahaya makin banyak jumlah pembawa yang dihasilkan cahaya makin besar arus reverse. Oleh sebab itu dioda photo merupakan detektor cahaya yang baik sekali. Gambar 1b menunjukkan lambang atau symbol dari dioda photo

 

c.    Dioda Varactor

Seperti kebanyakan komponen dengan kawat penghubung, dioda mempunyai kapasitansi bocor yang mempengaruhi kerja pada frekuensi tinggi, kapasitansi luar ini biasanya lebih kecil dari 1 pF. Yang lebih penting  dari kapasitansi luar ini adalah kapasitansi dalam junction dioda. Kapasitansi dalam ini kita sebut juga kapasitansi peralihan CT. Kata peralihan disini menyatakan peralihan dari bahan type-p ke typr-n. Kapasitansi peralihan dikenal juga sebagai kapasitansi lapisan pengosongan , kapasitansi barier dan kapasitansi junction. Apakah kapasitansi peralihan itu?. Perhatikan gambar 2.2 dibawah ini.

 




 

Lapisan pengosongan melebar hingga perbedaan potensial sama dengan tegangan riverse yang diberikan.Makin besar tegangan riverse makin lebar lapisan pengosongan. Karena lapisan pengosongan hamper tak ada pembawa muatan ia berlaku seperti isolator atau dielektrik. Dengan demikian kita dapat membayangkan daerah p dan n dipisahkan oleh lapisan pengosongan seperti kapasitor keeping sejajar dan kapasitor sejajar ini sama dengan kapasitansi peralihan. Jika dinaikkan teganag riverse membuat lapisan pengosongan menjadi lebar, sehingga  seperti memisahkan keeping sejajar terpisah lebih jauh. Dan sebagai akibatnya kapasitansi peralihan dari dioda berkurang bila tegangan riverse bertambah. Dioda silicon yang memanfaatkan efek kapasitansi yang berubah-ubah ini disebut varactor.

Dalam banyak aplikasi menggantikan kapasitor yang ditala secara mekanik, dengan perkataan lain varaktor yang dipasang parallel dengan inductor merupakan rangkaian tangki resonansi. Dengan mengubah-ubah tegangan riverse pada varactor kita dapat mengubah frekuensi resonansi. Pengontrolan secara elektronik pada frekuensi resonansi sangat bermanfaat dalam penalaan dari jauh.

 

d.   Dioda Schottky

Dioda schottky menggunakan logam emas, perak atau platina pada salah satu sisi junction dan silicon yang di dop (biasanya type-n) pada sisi yang alain. Dioda semacam ini adalah piranti unipolar karena electron bebas merupakan pembawa mayoritas pada kedua sisi junction.  Dan dioda Schottky ini tidak mempunyai lapisan pengosongan atau penyimpanan muatan, sehingga mengakibatkan ia dapat di switch nyala dan mati lebih cepat dari pada dioda bipolar. Sebagai hasilnya piranti ini dapat menyearahkan frekuensi diatas 300 Mhz dan jauh diatas kemampuan dioda bipolar.

 

e.   Dioda Step-Recovery

Dengan mengurangi tingkat doping dekat junction pabrik dapat membuat dioda step-recovery piranti yang memanfaatkan penyimpanan muatan. Selama konduksi forward dioda berlaku seperti dioda biasa dan bila dibias riverse dioda ini konduksi sementara lapisan pengosongan sedang diatur dan kemudian tiba-tiba saja arus riverse menjadi nol. Dalam keadaan ini seolah-olah dioda tiba-tiba terbuka menjepret (snaps open) seperti saklar, dan inilah sebabnya kenapa dioda step-recovery sering kali disebut dioda snap.

Dioda step-recovery digunakan dalam rangkaian pulsa dan digital untuk menghasilkan pulsa yang sangat cepat.Snap-off yang tiba-tiba dapat  menghasilkan pensaklaran on-off kurang dari 1 ns. Dioda khusus ini juga digunakan dalam pengali frekuensi.

 

f.     Dioda Zener

Dioda zener dibuat untuk bekerja pada daerah breakdown dan menghasilkan tegangan breakdown kira-kira dari 2 samapai 200 Volt. Dengan memberikan tegangan riverse melampaui tegangan breakdown zener, piranti berlaku seperti sumber tegangan konstan. Jika tegangan yang diberikan mencapai nilai breakdown, pembawa minoritas lapisan pengosongan dipercepat hingga mencapai kecepatan yang cukup tinggi untuk mengeluarkan electron  dari orbit luar. Efek zener berbeda-beda, bila dioda di-dop banyak maka lapisan pengosongan amat sempit. sehingga medan listrik pada lapisan pengosongan sangat kuat.

Pada gambar 3 menunjukkan kurva tegangan arus dioda zener. Pada dioda zener breakdown mempunyai knee yang sangat tajam, diikuti dengan kenaikan arus yang hampir vertikal. Perhatikan bahwa tegangan kira-kira konstan sama dengan  Vz pada sebagian besar daerah breakdown. Lembar data biasanya menentukan nilai VZ pada arus test IZT tertentu diatas knee ( perhatikan gambar2.3 )



 


                              Gambar 2.3. Kurva Dioda Zener

 

Dissipasi daya dioda zener sama dengan  perkalian tegangan dengan  arusnya, yaitu:

 

                                         

 

Misalkan jika Vz=13.6 V dan Iz= 15mA, Hitunglah daya dissipanya.

 

                    Jawab:   Pz = 13,6 x 0,015 = 0,204 W

Selama PZ kurang dari rating daya Pz maks dioda zener tidak akan rusak. Dioda zener yang ada dipasaran mempunyai rating daya dari ¼ W sampai lebih dari 50 W. Lembar data kerap kali menspesifikasikan arus maksimum dioda zener yang dapat ditangani tanpa melampaui rating dayanya. Arus maksimum diberi tanda IZm. Hubungan antara Izm  dan rating daya adalah:

 

Penggunaan dioda Zener sangat luas, kedua setelah dioda penyearah. Dioda silikon ini dioptimumkan bekerja pada daerah breakdown dan dioda zener adalah tulang punggung regulator tegangan. Jika dioda zener bekerja dalam daerah breakdown, bertambahnya tegangan sedikit akan menghasilkan pertambahan arus yang besar. Ini menandakan bahwa dioda zener pempunyai inpedansi yang kecil. Inpedansi dapat dihitung dengan bantuan rumus:

 

source: Modul ELKA-MR.UM.002.A

Friday, 10 November 2023

Pengertian Transistor


Transistor adalah alat semikonduktor yang dipakai sebagai penguat, pemotong (switching), stabilisasi tegangan, modulasi sinyal atau fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

                                                                           

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

...file lama zaman kuliah...

Thursday, 9 November 2023

Cara Kerja Transistor


Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.

Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.

FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

 

...file lama zaman kuliah...

ANDA PENGUNJUNG KE :

CARI ARTIKEL LAIN DI BLOG INI DENGAN MEMASUKKAN KATA PADA KOLOM SEARCH DIBAWAH